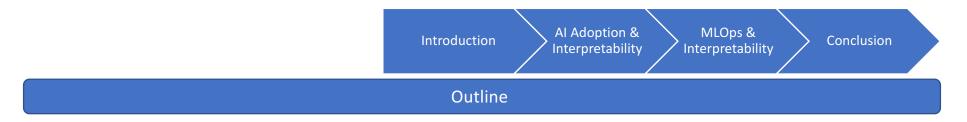
5 Techniques to Increase Al Adoption Rates via Interpretability

Mike Purewal Fall 2021



- 1. Introduction
- 2. Al Adoption
- 3. MLOps & Interpretability



- Convincing skeptical users to adopt an AI model requires <u>constant</u> & <u>multi-faceted</u> questions into interpretability
- Answering these questions timely & accurately is a necessary for user adoption
- MLOps is the discipline most closely associated with being able to answer the breadth of questions
- MLOps is <u>essential</u> to the adoption process

THIS IS YOUR MACHINE LEARNING SYSTEM?

WHAT IF THE ANSWERS ARE WRONG?

YUP! YOU POUR THE DATA INTO THIS BIG PILE OF LINEAR ALGEBRA, THEN COLLECT THE ANSWERS ON THE OTHER SIDE.

JUST STIR THE PILE UNTIL

THEY START LOOKING RIGHT.

Takeaways: 5 Techniques

Support adoption campaigns by:

- 1. Engender trust demonstrating robust model performance.
- 2. Baselining via simple, non-ML models to gain transparency.
- 3. Tools for post-hoc <u>explainability</u>.
- 4. Demonstrating model transferability.
- 5. Tools to communicate model informative-ness.

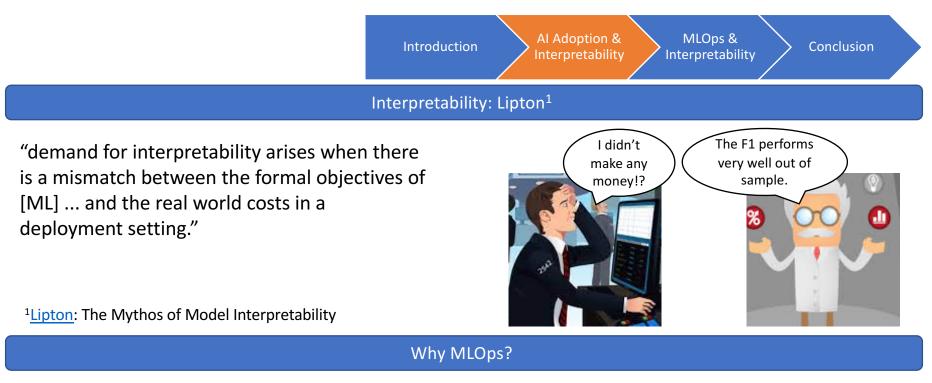
"It's awesome, all right. Remind me again: Why did we build this?

- Adoption defined for this talk: The period between <u>specifying/building</u> a product and <u>using</u> a product.
- Other definitions:
 - Cultural absorption of ML mindset [Google]
 - Implementation (not necessarily use) of an ML model [McKinsey]
 - Organizational constraints [Gartner]

Adoption: You want me to use what?

How does an organization arrive in a situation where something is built, but there's resistance from end users?

- <u>Enterprise initiatives & senior management demands</u>: Purposeful (sometimes) mismatch between strategic vision and end users. Desire for achieving change by 'forcing' use of more advanced tooling.
- <u>Lack of product/project management involvement</u>: There is development without clear product specification and communication between technical team and end users. This is usually (not always) facilitated by project or product management (different functions).



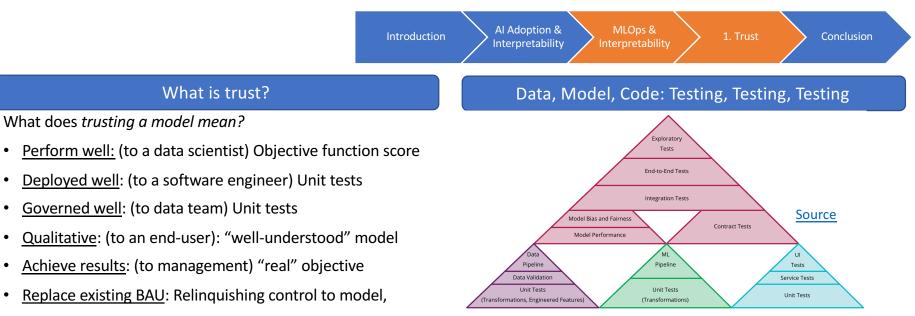
- MLOps (machine learning operations) is a practice that aims to make **developing** and **maintaining production** machine learning **seamless** and **efficient**.
- While MLOps is relatively nascent, the data science community generally agrees that it's an umbrella term for *best practices and guiding principles around machine learning not a single technical solution*. Source: Valohai

Introduction

Al Adoption & Interpretability MLOps & Conclusion

Adoption & Interpretability

	Common Resistance Point	Interpretability Theme	Proposed Solution
1	The model will produce inaccurate output.	Trust	Demonstration of robust model performance, including data integrity.
2	The model is a black box, no <i>feel</i> of how it is operating.	Transparency	Moving towards simulatability, decomposition or algorithmic transparency.
3	The model is a black box, no <i>feel</i> of its <i>output</i> .	Post-hoc Interpretability	Dashboards showing explainability and drivers of results
4	The model only works in a lab. Non- stationary nature of business (SPACs, crisis,).	Transferability	Demonstration of performance with increasing generality.
5	The model will replace my value-add.	Informative-ness	Make end users <i>better</i> at their jobs by <i>learning</i> from the model.



•

٠

٠

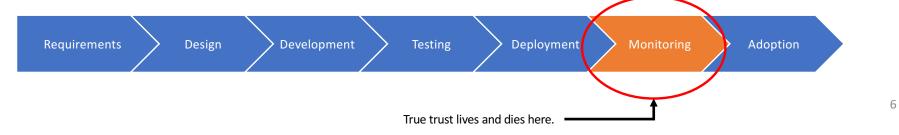
•

•

٠

AI Model Lifecycle

- Waterfall development: engagement with stakeholders throughout, but usually 1x interactions pts -> monitoring and adoption ٠ are a continuous touchpoint.
- Without the proper monitoring infrastructure to support ongoing testing, building trust in an ad-hoc manner becomes onerous ٠ and self-defeating through error prone analysis.

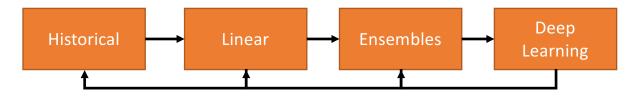


Introd	Al Adoption & MLOps & 2. Transparency Conclusion		
Simulatability	Composability		
 <u>Strict definition</u>: A person can contemplate the entire model at once. 	Tendency for "one model":Total Losses		
• <u>Less strict definition I</u> : Simple enough for a person to step through the calculations in a 'reasonable' amount of time	Total RevenueCompose multiple models in sequence		
Less strict definition II: A low-level mechanistic	 Benefits code maintenance, re-use, debugging, 		

interpretation.

- Algorithmic Transparency
- What level of complexity is needed to achieve the objective?
- Transparency ~ 1 / Complexity

understanding



Introduction

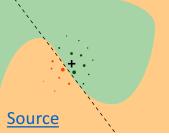
Al Adoption & Interpretability

3. Post-hoc

Conclusion

LIME

- Local interpretable model-agnostic explanations
- Explainable and sparse ('glass box') model is fit to black box output near specific prediction using simulated data.



Technique: Permutation Importance

Beware Default Random Forest Importances (link)

Methodology:

- Record a baseline metric.
- Permute values of 1 feature; re-compute metric w/ test samples.
- Importance of feature: re-computed metric baseline.
- More computationally expensive than the mean decrease in impurity.
- Does not require retraining the model after permuting each column.

• SHapley Additive exPlanations

MLOps &

• SHAP is based on the game theoretically optimal <u>Shapley Values</u>.

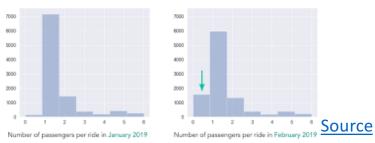
A prediction can be explained by assuming that each feature value of the instance is a "player" in a game where the prediction is the payout. Shapley values – a method from coalitional game theory – tells us how to fairly distribute the "payout" among the features.

SHAP

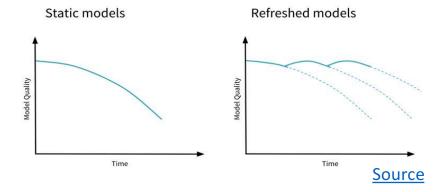
Properties of Explanations

- Symmetry
- Efficiency
- Dummy
- Additivity
- <u>Source</u>

• Data Integrity, Data Drift ("X")



 Performance Shifts / Model Drift / Re-training / Concept Drift ("X->Y")



- Health / Operation Metrics
- Application KPI Performance, Performance by Segment
- Explain-ability
- Governance: MRM, Regulators, Bias/Fairness

	Monitoring Tools					
• • • •	Splunk Great Expectations Elastic Broadcom AIOps Datadog	• • •	AppDynamics BigPanda Dynatrace NewRelic databricks			

Introduction

Al Adoption & MLOps & Interpretability

. Informative-

Conclusion

Tywman's Law

- The more unusual or interesting the data, the more likely they are to have been the result of an error of one kind or another. [Wiki, Text (p39)]
- Asymmetric explanation: Positive result->story; Negative result->limitation.
- At-risk cohorts (all me at some point in my career):
 - Inexperienced data scientists,
 - PhD students
 - Sleep deprived employees
 - Domain transfers
 - Anyone excitable

Value-Add: Making Users Smarter

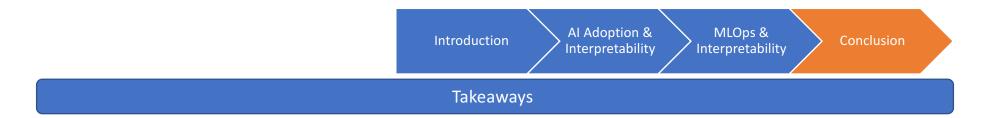
Optimal		Human			
		Correct	Wrong		ſ
ML	Correct	х	х		
Σ	Wrong				

Potentially Insightful		Human		
		Correct	Wrong	
ML	Correct		x	_
Σ	Wrong	x		۶

Pot	tentially	Human		
No Value-Add		Correct	Wrong	
ML	Correct	x		
2	Wrong		х	

D	ion MI	Human		
	op ML	Correct	Wrong	
ML	Correct			
2	Wrong	x	х	

- First show model is correct when the human is.
- Once established, an informative model generates examples where *the model is correct*, but the human is **wrong**.
- It should also give an understanding why it performed better.



- Convincing skeptical users requires constant & multi-faceted questions into model interpretability
- Answering these questions timely & accurately is a necessary for user adoption
- MLOps is the discipline most closely associated with being able to answer the breadth of questions
- MLOps is essential to the adoption process